

BNL's Role in US ATLAS Computing

Torre Wenaus, BNL

DOE Annual HEP Program Review BNL April 18, 2006

ATLAS Computing Timeline

1999	Physics TDR based on previous generation software (Geant3, Fortran)
2000+	New C++ software: Athena framework, Geant4, reconstruction,
2002	LHC Computing Grid (LCG) launched to provide facilities, software
2003	Data Challenge 1: First large scale use of the grid; Geant3 based
2004	Data Challenge 2: Fully grid based; Geant4, LCG software
2004	Combined test beam: Real data analysis with new software, ongoing
2005	Rome physics workshop: First large scale analysis
2005	ATLAS computing TDR laying out the computing model
2006	Computing System & Detector Commissioning
Fall 2006	LCG computing infrastructure for startup complete
Fall 2006	Cosmic ray run
Spring 2007	Datataking rehearsal (proposed)
Late 2007	Datataking

ATLAS Data Flow 2008

From online: 2.7 TB/day To CERN tape: 3.7 TB/day

Tier 0 disk to BNL tape: 200 MB/s

RAW1

Tape RAW1 ESD2 AODm2 0.044 Hz 3.74k F/day 44 MB/s

During early running:

Low luminosity (~10% nominal) but loose triggering for performance studies

==> Nominal data volumes from day 1 Time critical detector validation and early physics sensitivity

==> Effective analysis infrastructure from day 1

ATLAS Computing at BNL

- Principal objectives:
 - Fulfill role as principal US center (Tier 1) in the tiered ATLAS (and LHC) computing model
 - Supply capacity to ATLAS as agreed in MOU (~20%)
 - Guarantee the capability and capacity needed by the US ATLAS physics program
 - Establish a critical mass in computing and software to support ATLAS physics analysis at BNL and elsewhere in US
 - Contribute to ATLAS software most critical to enabling physics analysis at BNL and the US
 - Help US ATLAS physicists to avail themselves of BNL expertise and facilities and strengthen US ATLAS physics
 - Leverage projects outside ATLAS, eg the grid projects, where they can strengthen the BNL and US ATLAS programs

ATLAS Computing at BNL

- Principal activities:
 - US ATLAS Tier 1 Center
 - Tier 1 facility development and operations
 - Tier 2 support: services, expertise, coordination, workshops
 - Grid computing development, collaboration
 - ATLAS core software
 - Software support and QA
 - Data management
 - Event data model and event store
 - Distributed production systems
 - Analysis tools and distributed analysis
 - ATLAS detector and physics analysis software (cf. Kyle's talk)
 - Calorimeter, muons, trigger subsystems
 - Combined reconstruction
 - Higgs, SUSY and Heavy Ion analysis participation

BNL in ATLAS Computing Leadership

BNL holds leadership roles in all principal activity areas

- K. Assamagan, Physics Analysis Tools Coordinator
- B. Gibbard/R. Popescu, US ATLAS Facilities Managers
- A. Klimentov, Software Integration Group Coordinator
- A. Klimentov, DDM Operations Coordinator
- S. Rajagopalan, Calo software/performance Co-Coordinator
- S. Rajagopalan, US ATLAS Software Manager
- A. Undrus, US ATLAS Software Support Manager
- T. Wenaus, Data Management/Database Project Co-Leader
- T. Wenaus, Panda Project Co-Leader
- T. Wenaus, US ATLAS Distributed Software Manager

US in the ATLAS Computing Model

- BNL Tier 1 responsibilities (~10 Tier 1s in all)
 - Archival shares of raw and reconstructed data, and associated calibration & reprocessing
 - Store and serve 100% of ATLAS reconstruction (ESD), analysis (AOD) and physics tag data (TAG)
 - Physics group level managed production/analysis
 - Resources dedicated to US physicists: additional per-physicist capacity at 50% of the level managed centrally by ATLAS)
- US Tier 2s have complementary role
 - Bulk of simulation and end user analysis support
 - Store and serve 100% of AOD, TAG and subset of ESD
- Tier 1 and Tier 2s both support institutional and individual users
 - Primarily end user analysis

BNL Tier 1 Facility Evolution

• 2005

- ATLAS staff increased 4 FTEs to 11.5 at year end
 - Ramp-up in support of databases, data storage/distribution, grid administration/operations, distributed production
- 4-fold increase in CPU to 740 kSi2k
- dCache in production, managing ~200TB of farm disk

• 2006

- Staff increase to 15 FTEs (data storage & management, fabric & grid infrastructure, operations & user support)
- US operations hub for new data management and production/analysis systems
 - ~50% of US CPUs currently in production are at BNL
- HPSS mass storage upgrade (just completed)
- WAN/LAN upgrade to 10 Gb/s (done)
- 200 MB/s required for CERN disk BNL tape exceeded (this month)
- CPU to ~1200 kSi2k
- Disk to ~500 TB

US Tier 1 and Tier 2s

BNL Tier 1

2006: 1200 kSi2k CPU, 500 TB disk

2008: 8000 kSi2k CPU, 4600 TB disk, 8 PB tape

Northeast Tier 2 (BU, Harvard)

2006: 350 kSi2k CPU, 170 TB disk 2008: 1090 kSi2k CPU, 480 TB disk

Southwest Tier 2 (UT Arlington, Oklahoma U, UNM, Langston)

2006:900 kSi2k CPU, 200 TB disk 2008: 1700 kSi2k CPU, 540 TB disk Midwest Tier 2 (U Chicago, Indiana)

2006: 510 kSi2k CPU, 130 TB disk 2008: 1100 kSi2k CPU, 465 TB disk

Two more Tier 2 selections July 2006

2008 Tier 2 totals: 6500 kSi2k CPU, 2900 TB disk

In 2008 ~60% of CPU & disk and 100% of tape storage will be at BNL

ATLAS Software at BNL

- A collaboration of three groups in the Physics Department
 - Physics Applications Software: D. Adams, W. Deng, A.
 Klimentov, T. Maeno, P. Nevski, M. Nowak, A. Undrus, T.
 Wenaus
 - Core software, user support, production operations
 - Omega: K. Assamagan, K. Cranmer, H. Ma, S. Rajagopalan, S. Snyder et al
 - Physics analysis software and tools, core software, user support, analysis
 - Tier 1 Facility: J. Hover, Y. Smirnov, X. Zhao et al
 - DB services, facility integration, core software
 - Close interactions between software and facility people

Software Support and Quality Assurance

- Alex Undrus is US ATLAS Librarian, US responsible for software support, and is a principal contributor to ATLAS software infrastructure and QA support
 - ATLAS software installations at BNL Tier 1 for US use
 - ATLAS-wide automated nightly software builds and QA test suites
 - US ATLAS software user support
 - Hire is pending to expand support for ATLAS software users and Tier 2 software deployment
- David Adams is responsible for data validation in US ATLAS production
- Pavel Nevski (@CERN) is responsible ATLAS-wide for production task definition and associated QA

Data Management

- BNL leads the effort at the ATLAS and US levels
 - Torre Wenaus co-leads the ATLAS Database and Data Management Project and leads the Distributed Data Management subproject
 - Alexei Klimentov (@CERN) leads Distributed Data Management Operations for ATLAS
 - Deploying the new DDM to all ATLAS Tier 1s
 - Wensheng Deng is responsible for Distributed Data Management Operations for US ATLAS
 - We work closely with the core team in the CERN ATLAS group developing the system, Don Quixote 2 (DQ2)
- The last year has been extremely productive: a fully reengineered system developed, deployed, validated, and now in production (BNL and the US first in deployment)

Event Data Model and Event Store

- BNL has been a leader from the beginning on the ATLAS event data model, its in-memory representation and its storage
- Srini Rajagopalan, Hong Ma originated the ATLAS transient event model (StoreGate) and continue as experts/developers
- In the last ~year new BNLers have made major contributions:
 - Scott Snyder (D0 event model expert) has become a major contributor to event model development
 - Kyle Cranmer has led development of the 'event view' event data representation for analysis and wrote most AOD classes
 - Tadashi Maeno has led development of event data representations for final analysis
 - Marcin Nowak (@CERN) now the ATLAS expert on the internals of the ATLAS event store (ROOT I/O and its use in POOL)
 - Kyle and Marcin on Event Management Board

One pending BNL hire to connect the effort to data management

Distributed Production

- As in DDM, the last year has seen a complete re-engineering of distributed production
 - With BNL stepping into major roles (BNL was not involved in development of the previous generation systems!)
- Panda Production ANd Distributed Analysis System
 - Initiated as a complete redesign in Aug 2005
 - Co-led by T. Wenaus, lead developer T. Maeno, and several other BNLers on the team (D. Adams, W. Deng, Y. Smirnov, X. Zhao); BNL responsible for ~8 of 10 system components
 - Rapid development led to Panda take-over of US ATLAS production in Dec
 - Fully integrated with ATLAS DDM
 - Runs as integral part of ATLAS production, and in standalone
 - Requires half the operations manpower and already delivers >4x the scalability of the previous system, with anticipated further factor 10-20

Planned BNL Panda hire went to UTA because of our high overhead

Distributed Analysis

- A very active year, but not all good!
- BNL gave up ATLAS DA coordination mainly due to the failure of the BNL-based DIAL system (D. Adams) to achieve broad take-up
- Following this, BNL and US ATLAS reorganized (under T. Wenaus) and replanned distributed analysis
- DA is now a principal design goal and deliverable for Panda
- DIAL has been used in debugging, benchmarking and validating Panda, but will subsequently be phased out (development is stopped)
- Panda based analysis came online in October (T. Maeno) and will be deployed at a usable scale (sufficient resources to not be overwhelmed by production) in next few weeks
- Panda and Panda-based analysis have captured interest in wider ATLAS
- Panda now on the 'short list' of analysis systems being implemented
 by ATLAS behind a generic front end (GANGA)

Physics Analysis Tools

- BNL leads the ATLAS Physics Analysis Tools (PAT) effort: Ketevi Assamagan
- BNL also has two of the key ATLAS developers of analysis tools: Kyle Cranmer, Tadashi Maeno
- Benefitting also from the active analysis community at BNL for generating ideas & tools and testing/improving them
- The team has led in the key ATLAS PAT deliverables:
 - Event representation for analysis (AOD)
 - EventView toolkit for using AODs in analysis
 - Athena (Framework) aware Ntuple for ROOT based final analysis
 - Extensive tutorials, documentation

Conclusion

- BNL has continued to focus its computing involvement on areas most critical to BNL and US ATLAS physics analysis
 - Very successfully, by leadership and technical measures
- The BNL Tier 1 serves as the hub and principal center of the US community, with scale-up for datataking underway
- The BNL computing effort provides the critical mass expertise and resources to support BNL as a leading analysis center and US ATLAS as a leader in physics analysis

More Information

- Feb 2006 DOE/NSF review of ATLAS computing
 - http://agenda.cern.ch/fullAgenda.php?ida=a06179
- US ATLAS Physics, Software and Computing
 - http://www.usatlas.bnl.gov/atlas_psc/
- BNL Tier 1
 - http://www.acf.bnl.gov/
- DDM
 - https://uimon.cern.ch/twiki/bin/view/Atlas/ DistributedDataManagement
- Panda
 - https://uimon.cern.ch/twiki/bin/view/Atlas/PanDA
- Distributed analysis with Panda
 - https://uimon.cern.ch/twiki/bin/view/Atlas/DAonPanda
- Physics analysis tools
 - https://uimon.cern.ch/twiki/bin/view/Atlas/PhysicsAnalysisTools

